

Техническое описание

Omnigrad S TC65

Термопарный датчик температуры, исполнение с сертификацией EEx-d, без сменной вставки, без термогильзы, присоединение к процессу резьбовое фиксированное или обжимной фитинг.

Электронная вставка PCP (4...20 мА), HART® или PROFIBUS-PA®

Область применения

Omnigrad S TC65 — это промышленный датчик температуры (термопара ТС: К или Ј), разработанный для использования в производстве сверхчистых химических веществ и нефтехимической промышленности; он также подходит для типовых условий промышленного применения. Поскольку прибор соответствует EN 50014/18/20 (сертификация АТЕХ), он может эффективно использоваться во взрывоопасных зонах. При необходимости прибор также доступен с преобразователем (PCP, HART® или PROFIBUS-PA®) в корпусе. В зависимости от требований процесса предусмотрены различные конфигурации и характеристики ТС65. Для монтажа на установках обычно требуется специальное присоединение к процессу, например обжимной фитинг с пружиной.

Области применения

- производство сверхчистых химических веществ;
- нефтехимическая промышленность;
- энергетика;
- общие промышленные работы;
- охрана окружающей среды.

Особенности и преимущества

- настраиваемая глубина погружения;
- алюминиевый корпус с классом защиты IP66...IP68;
- заземление или отсутствие заземления рабочего спая термопары с помощью кабеля из минерального оксида (кабель MgO) диаметром
 3... 6 мм:
- подключение к процессу: приварное или скользящий обжимной фитинг/обжимной фитинг с пружиной или стандартный обжимной фитинг;
- PCP, HART® и PROFIBUS-PA®, (2-проводные преобразователи 4...20 мА);
- точность термопары ТС (K (NiCr-Ni) и J (Fe-CuNi)): Кл. 1 - 2 (EN 60584) или Кл. Специальный — Стандартный (ANSI MC96.1);
- поставка термопары ТС (К или J) с одним или двумя элементами;
- сертификация ATEX II 2 GD EEx-d IIC;
- сертификация ATEX II 1/2 GD EEx d IIC.

TI288T/02/ru 71105561

Принцип действия и архитектура системы

Принцип измерения

Чувствительный элемент термопарного (TC) датчика температуры состоит из двух изолированных по всей длине металлических проводов, являющихся однородными, но отличающимися друг от друга. Эти два провода спаяны с одного конца, называемого рабочим или горячим спаем. Другой конец, со свободными проводами, называемый "холодным или свободным спаем", присоединяется к цепи измерения электродвижущей силы, в рамках которой сила генерируется за счет разницы термоэлектродвижущей силы каждого из проводов термопары при наличии разницы температур между горячим (Т1) и холодным спаем (эффект Зеебека). Холодный спай должен быть "компенсирован" до температуры 0°С (Т0). Функции, характеризующей зависимость электродвижущей силы и температур Т1 и Т0, соответствует кривая, характеристики которой зависят от материалов, из которых выполнена термопара. Некоторые кривые термопар, в особенности наиболее надежных в промышленных условиях, соответствуют стандартам EN 60584 и ANSI MC96.1.

Архитектура оборудования

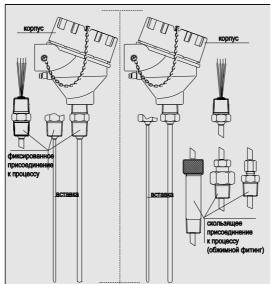


Рис. 1: TC65 с различными типами присоединения к процессу (фиксированное или фитина) и частями вставки.

Конструкция датчика температуры TC65 создана на основе следующих стандартов:

- EN 50014/18 (корпус)
- Горловина (фиксированное или скользящее присоединение к процессу)
- EN 60584 (вставка и чувствительный элемент).

Корпус выполнен из окрашенного алюминиевого сплава, возможна установка преобразователя и керамического блока вставки; класс защитного исполнения ІР66...ІР68. Для ТС65 предусмотрены следующие варианты присоединения к процессу: обжимной фитинг (скользящий или с пружиной), резьбовое фиксированное присоединение к процессу (M, GAS или NPT, см. главу "Компоненты системы"). Рабочий спай термопары (тип К или Ј) располагается рядом с наконечником зонда. Термопары доступны в двух вариантах: с заземлением и без заземления рабочего спая. Электрическое устройство термопары всегда соответствует требованиям стандартов EN 60584/61515 или ANSI MC96.1/ASTM E585.

Материал и вес

Корпус	Вставка	Присоединение к процессу	Bec
алюминий	покрытие:	с пружиной в SS 316/1.4401	0,51,0 кг
с эпоксидным	SS 316L/1.4404,		в стандартном
покрытием	Inconel® 600/2.4816		исполнении

Рабочие характеристики

Рабочие условия

Рабочие условия/испытание	Тип продукта/правила	Значение/данные испытаний	
Температура окружающей среды	корпус (без устанавливае в головке преобразовате	-40130°C	
	корпус (с устанавливаемым в головке преобразователем)		-4085°C
Температура	Ограничена покрытием	< 600°C	SS 316L/1.4404
процесса материала: вставка или термогильза		< 800°C	SS 316Ti/1.4571
		< 1100°C	Hast.® C276/2.4819 - Inc.600®/2.4816

Рабочее давление (максимум)	Значения давления могут меняться в зависимости от температуры. Например, допустимы следующие максимальные значения давления для труб диаметром 9 мм при умеренной скорости потока:				
Максимальная скорость потока	Максимальная допустим уменьшается с увеличен в контакте с потоком.				
Испытание на	Вставка в соответствии	Ускорение	до 3 g		
ударопрочность и виброустойчивость	· · · ·		10 Гц500 Гц и обратно		
виороустоичивоств		Время испытания	10 часов		

Погрешность

EN 60584						
Класс	Класс Макс. отклонение		Макс. отклонение	Цвета кабелей		
2	+/-2,5°C (-40333°C) +/-0,0075 ltl (333750°C)	1	+/-1,5°C (-40375°C) +/-0,004 ltl (375750°C)	+ черный - белый		
2	+/-2,5°C (-40333°C) +/-0,0075 ltl (3331200°C)	1	+/-1,5°C (-40375°C) +/-0,004 ltl (3751000°C)	+ зеленый - белый		
	2	2 +/-2,5°C (-40333°C) +/-0,0075 ltl (333750°C) 2 +/-2,5°C (-40333°C) +/-0,0075 ltl	Класс Макс. отклонение Класс 2 +/-2,5°C (-40333°C) +/-0,0075 ltl (333750°C) 1 2 +/-2,5°C (-40333°C) +/-0,0075 ltl 1	Класс Макс. отклонение Класс Макс. отклонение 2 +/-2,5°C (-40333°C) +/-0,0075 ltl (333750°C) 1 +/-1,5°C (-40375°C) +/-0,004 ltl (375750°C) 2 +/-2,5°C (-40333°C) +/-0,0075 ltl 1 +/-1,5°C (-40375°C) +/-0,004 ltl		

Термопара и	ANSI MC96.1							
диапазон температур, °С	Класс	Макс. отклонение	Класс	Макс. отклонение	Цвета кабелей			
J (Fe-CuNi) 0750°C	Стандартный	+/-2,2°C (0293°C) +/-0,75% (293750°C)	Специальный	+/-1,1°C (0275°C) +/-0,4% (275750°C)	+ черный - красный			
K (NiCr-Ni) 01250°C	Стандартный	+/-2,2°C (0293°C) +/-0,75% (2931250°C)	Специальный	+/-1,1°C (0275°C) +/-0,4% (2751250°C)	+ желтый - красный			

Другие ошибки							
	См. соответствующую документацию (коды в конце документа)						
Максимальная погрешность дисплея	0,1% ПДИ + 1 цифра (ПДИ = полный диапазон измерений)						

Время отклика

Проверка, со вставкой термопары, в воде при 0,4 м/с (в соответствии с IEC 60751) и температуре от 23 до 33 °C:

Диаметр стержня вставки	Тип чувствительного элемента	Температура при испытании	Время отклика
SS 316 - d. 6 мм	K (NiCr-Ni) или J (Fe-CuNi)	t50	2,5 сек.
		t90	7,0 сек.

Изоляция

Тип изоляции измерения	Результат
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	> 1 ГОм при 25°C
зонда соответствует EN 60584, напряжение тестирования составляет 500 В	> 5 МОм при 500°C

Самонагрев

Незначителен при применении преобразователей E+H iTEMP®.

Монтаж

Датчик температуры Omnigrad S TC65 можно монтировать в трубах, резервуарах или других частях установки при помощи обжимных соединений или термогильз.

В отсутствии удлиняющей горловины (расположенной между присоединением к процессу и головкой) возможен перегрев корпуса. Для предотвращения этого температура головки не должна превышать предельные значения, определенные в главе "Компоненты системы" (см. рис. 3).

Информацию для компонентов с сертификацией ATEX (преобразователь, вставка) см. в соответствующей документации (по коду, указанному в конце настоящего документа).

Глубина погружения может влиять на точность измерения. Если глубина погружения невелика, при регистрации температуры может возникнуть ошибка, вызванная низкой температурой жидкости рядом со стенками и теплопередачей, происходящей через стержень датчика.

Воздействием такой ошибки невозможно пренебрегать при наличии большой разницы между рабочей температурой и температурой окружающей среды. Для предотвращения ошибок такого рода рекомендуется использовать глубину погружения (L) не менее 50...70 мм (без термогильзы).

В небольших трубах линия оси трубы должна быть достигнута, и по возможности несколько перекрыта наконечником зонда (см. рис. 2A-2B). Изоляция на внешней части трубы позволяет уменьшить эффект, вызванный небольшой глубиной погружения датчика. Другим решением может быть установка под наклоном (см. рис. 2C-2D). Для оптимального монтажа в промышленности рекомендуется пользоваться следующей формулой: h(d, L > D/2 + h).

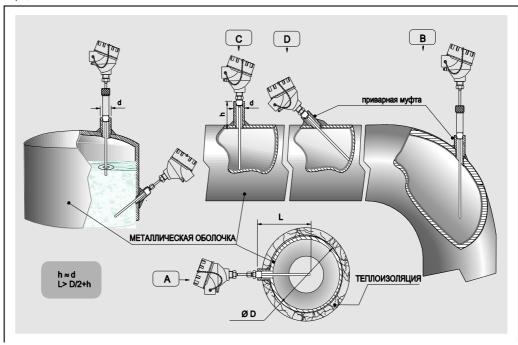


Рис. 2: Примеры монтажа

соблюдать установленные усилия затяжки.

В случае с двухфазными потоками необходимо уделять особое внимание выбору точки измерения, так как определяемое значение температуры может колебаться. В отношении коррозии: базовый материал смачиваемых частей (SS 316L/1.4404 или обжимной фитинг в SS 316/1.4401 или Inconel® 600/2.4816 и несколько типов муфт) способен выдерживать воздействие общих коррозийных сред даже при высоких температурах. Для получения дополнительной информации о возможностях применения в специальных условиях обратитесь в Центр обслуживания E+H. Если сенсор поставляется разобранным на компоненты, в процессе сборки необходимо

Компоненты системы

Корпус

Защитный корпус ТА21Н, часто называемый "соединительной головкой", предназначен для размещения и защиты клеммного блока или преобразователя и установки электрических подключений для механических компонентов. Корпус ТА21Н, применяемый в устройстве ТС65, соответствует стандартам EN 50014/18 и EN 50281-1-1, EN 50281-1-2 (Сертификация EEx-d для взрывозащищенного исполнения). Стыковка головки и удлинителя под головкой и крышкой (с резьбой) обеспечивает степень защиты IP66...IP68.

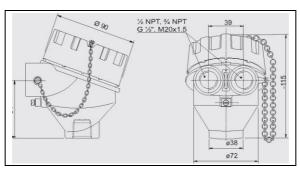
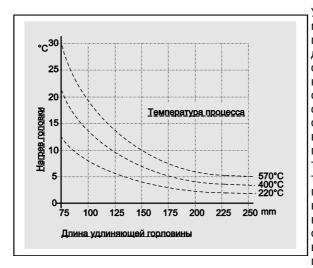



Рис. 3: Корпус ТА21Н

Головка также снабжена цепочкой для соединения корпуса и крышки, облегчающей использование прибора в ходе технического обслуживания систем. Кабельный ввод с однозаходной или двухзаходной резьбой может быть следующим: M20×1.5, 1/2" NPT или 3/4" NPT, G1/2".

Удлиняющая горловина

Удлиняющая горловина вставляется между корпусом и термогильзой или присоединением к установке. В ТС65 длина удлиняющей горловины определяется присоединением к процессу: фиксированный, скользящий обжимной фитинг или обжимной фитинг с пружиной. На основании рис. 4 можно сделать вывод о том, что длина удлиняющей горловины может влиять на температуру на головке. Эта температура не должна выходить за пределы значений, указанных в разделе "Рабочие условия". Перед выбором соединения рекомендуется ознакомиться с этим графиком и выбрать подходящий удлинитель для предотвращения нагрева головки.

Рис. 4: Нагрев головки под воздействием температуры процесса

Присоединение к процессу

Предусмотрены следующие типы стандартного присоединения к процессу:

Тип	Модель	Резьбовое присоединение к процессу	L, мм	С,	
A1	Фиксиро- ванное	3/4" NPT	42	15	½"NPT ½"NPT
A2	Фиксиро- ванное	1/2" NPT	42	8	
B1	Обжимной фитинг	1/2" NPT 3/4" NPT	55 55	8 8	PC PC PC PC PC
B2	С пружиной	1/2" NPT	55	8	A1 A2 B1 B2 B3
ВЗ	С пружиной	1/2" NPT 3/4" NPT	105 120	-	

Устанавливаемый в головке электронный преобразователь

Для получения выходного сигнала требуемого типа следует выбрать соответствующий преобразователь, устанавливаемый в головке прибора. Endress+Hauser поставляет преобразователи современного уровня (серия iTEMP®) на основе технологии 2-проводного подключения, с выходным сигналом 4...20 мА, HART® или PROFIBUS-PA®. Все они легко программируются с помощью ПК.

Устанавливаемый в головке преобразователь	Используемое программное обеспечение
PCP TMT181	ReadWin® 2000
	ReadWin® 2000, FieldCare, ручной программатор DXR275, DXR375
PROFIBUS PA® TMT184	FieldCare

Для преобразователей PROFIBUS-PA® компания E+H рекомендует использовать специальные разъемы PROFIBUS®. В стандартном варианте поставляются разъемы типа Weidmüller. Подробную информацию о преобразователях см. в соответствующей документации (согласно кодам ТІ, приведенным в конце настоящего документа). Если преобразователь, устанавливаемый в головке устройства, не используется, зонд датчика может быть подключен через клеммный блок к удаленному преобразователю (например, установленному на рейке DIN). При оформлении заказа заказчик может выбрать нужную ему конфигурацию. Поставляются следующие преобразователи для монтажа в головку прибора:

Описание	Чертеж
ТМТ181: РСР 420 мА. Преобразователи ТМТ181, программируемые на ПК.	Ø 33 Ø 44 Ø 33
TMT182: Smart HART®. На выходе TMT182 - наложенные сигналы 420 мА и HART®.	26.5

Описание	Чертеж
ТМТ184: PROFIBUS-PA®. Для модели ТМТ184 с выходным сигналом PROFIBUS-PA® адрес обмена данными может быть задан программно или с помощью механического DIP-переключателя.	898 844 833 833

Зонд

В устройстве TC65 измерительный зонд представляет собой несъемную вставку с минеральной изоляцией (MgO) с покрытием AISI316L.

Для глубины погружения (ML) предусмотрены наиболее распространенные размеры и специальные пользовательские размеры. Клиент также может заказать особую длину в рамках определенного диапазона (см. раздел "Структура продаж" в конце настоящего документа).

Длину датчика можно выбрать в пределах стандартного диапазона 50...5000 мм. Также возможен заказ и поставка датчиков длиной свыше 5000 мм после технического анализа области применения (макс. длина 30000 мм). Электрическое подключение: 2 провода для каждой термопары. (см. рис. 5)

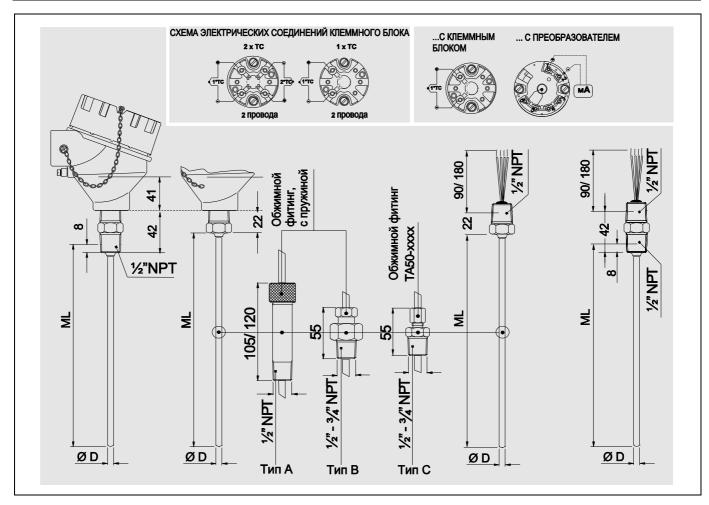


Рис. 5: Функциональные компоненты и стандартные схемы электрических соединений с керамическим клеммным блоком и преобразователем.

Для обеспечения быстрой поставки и снижения количества хранимых запасных частей рекомендуется использовать ТС65 со стандартными вариантами длины.

Сертификаты и нормативы

Сертификаты по взрывозащищенному исполнению ■ Сертификат ATEX CESI 05ATEX038 для взрывозащищенного исполнения: ATEX II 2 GD EEx-d IIC T6..T5 T85°...T100°C. Маркировка TC65: С€.

Для получения дополнительной информации о сертификации NAMUR NE 24 и декларации производителя в соответствии со стандартами EN 50018, EN 50020, EN 50281-1-1, EN 50281-1-2 обратитесь в службу по работе с клиентами Endress+Hauser.

Норматив PED

Учитывается директива по оборудованию, работающему под давлением (97/23/CE). К этим типам инструментов не применим раздел 2.1 статьи 1. Маркировка € в соответствии с директивой PED не требуется.

Сертификация материалов Сертификат на материал EN 10204 3.1 выбирается непосредственно из структуры продаж изделия и относится к частям датчика, находящимся в контакте с жидкостью процесса. Другие типы сертификатов, относящихся к материалам, запрашиваются отдельно. "Краткая форма" сертификата включает в себя упрощенный вариант декларации без приложений, относящихся к материалам, применяемым в конструкции отдельного датчика, и гарантирует возможность отслеживания материалов при помощи идентификационного номера датчика температуры. Данные об источнике материалов могут быть запрошены клиентом позже, в случае необходимости.

Дополнительная информация

Техническое обслуживание Датчик температуры Omnigrad S TC65 не требует особого технического обслуживания. Информацию для компонентов с сертификацией ATEX (преобразователь, вставка) см. в соответствующей документации (в конце настоящего документа).

Размещение заказа

Структура продаж

ТС65- Термопарный датчик температуры Omnigrad S TC65 Термопарный датчик температуры, исполнение с сертификацией EEx-d, без сменной вставки. Тип корпуса: IP66 / IP68, материал: алюминий с эпоксидным покрытием. Исполнение для непосредственного контакта с присоединением к процессу: приваренное к вставке или скользящее по оболочке вставки. Два диапазона эксплуатации и измерений: -40...750°C (с TC J); -40...1200°C (с TC K)

C	ерти	фик	аты										
Α	Д	ля б	езопас	ных :	30H								
M	*/	ATEX	(II 1/2 (GD E	Ex c	IIC							
E	*/	ATEX	(II 2 GI	D EE	x d l	IC							
	Г	ОЛОЕ	вка, ма	тери	ериал, класс IP								
	Α	. T	A21H, a	алю	лини	йсэ	поксі	идным покрытием, , IP66 / IP68					
	Y							необходимо указать					
			абелы				,						
		Α	1 × 1	1/2 N	PT								
		В	2 × 1	1/2 N	PT								
}	ŀ	C		—									
		D											
		E											
		F			•			_					
		Υ						ние, необходимо указать					
								оцессу					
					•	уетс		W 00 040					
	ļ		11					- M, SS 316					
			12					- M, SS 316					
			21					ıг, 1/2" NPT - M, 55 мм, с пружиной					
			31	Обх	кимн	юй ф	ритин	ıг, 1/2" NPT - M, 105 мм, с пружиной					
			32	Обх	кимн	юй ф	ритин	ıг, 3/4" NPT - M, 120 мм, с пружиной					
			41	Обх	кимн	юй ф	ритин	г TA50, 1/2" NPT - M, скользящий					
			42	Обх	кимн	юй d	ритин	ıг TA50, 3/4" NPT - М, скользящий					
			99	Спе	шиал	ПЬНО	е исп	олнение, необходимо указать					
				О Специальное исполнение, необходимо указать Длина вставки ML									
				Х	N	1M							
				Υ			тьное	е исполнение, необходимо указать					
					_	-		авки					
					1	3.0	мм						
					3	6,0							
					9			ьное исполнение, необходимо указать					
						-		наконечника					
						1		ндарт					
						2	l.	ндарт ический до 120°					
						9		циальное исполнение, необходимо указать					
						J		ебразователь в головке; диапазон					
							F	Тонкие проволочные выводы					
							С	Клеммный блок					
							Р	ТМТ181-A, PCP, от до°С, 2-проводной,					
							ľ	изолированный					
					ĺ		Q	ТМТ181-В, РСР АТЕХ, от до°С, 2-проводной,					
							_	изолированный					
							R	ТМТ182-A, HART®, от до°C, 2-проводной,					
							Т	изолированный ТМТ182-В, HART® ATEX, от до °С, 2-проводной,					
					!		s	изолированный ТМТ184-A, Profibus PA®, от до°C, 2-проводной,					
							V	изолированный TMT184-B, Profibus PA® ATEX, от до°C,					
					-		1	2-проводной, изолированный ТНТ1 отдельный элемент					

	ĺ			ĺ	1	Точность термопары ТС; материал;						
						Α	1× тип К СІ. 1 специальный; Inconel®600					
						В	2× тип К СІ. 1 специальный; Inconel®600					
						Е	1× тип J Cl. 1 специальный; SS 316L					
						F	2× тип J Cl. 1 специальный; SS 316L					
						Υ	Специальное исполнение, необходимо указать					
							Стандартная термопара; рабочий спай;					
							1	EN	60584; без заземления			
			Î			Ì	2	EN	60584; с заземлением			
						Ì	3 ANSI MC96.1; без заземления					
						Ì	4 ANSI MC96.1; с заземлением					
							9 Специальное исполнение, необходимо указать					
							Дополнительные опции					
								Α	Не требуется			
								Υ	Специальное исполнение, необходимо указать			
TC65-									∈ Код заказа (полный)			

Структура продаж

THT1	Моде	оль и	исполнение устанавливаемого в головке преобразователя						
	F11	ТМТ	Г181-А РСР, 2-проводной, изолированный, программируемый отдо°C						
	F21	ТМТ	Г181-В РСР АТЕХ, 2-проводной, изолированный, программируемый отдо°С						
	F22	ТМТ	Г181-С РСР FM IS, 2-проводной, изолированный, программируемый отдо°С						
	F23	ТМТ	Г181-D PCP CSA, 2-проводной, изолированный, программируемый отдо°C						
	F24	TMT °C	Г181-Е РСР ATEX II3D, 2-проводной, изолированный, программируемый от до						
	F25	TMT °C	[181-F PCP ATEX II3D, 2-проводной, изолированный, программируемый от до						
	L11	ТМТ	Г182-А HART®, 2-проводной, изолированный, программируемый отдо°С						
	L21		Г182-В HART® ATEX, 2-проводной, изолированный, программируемый до°С						
	L22		Г182-С HART® FM IS, 2-проводной, изолированный, программируемый до°С						
	L23	ТМТ	Г182-D HART® CSA, 2-проводной, изолированный, программируемый отдо°C						
	L24	ТМ1 до .	Г182-Е HART® ATEX II3D, 2-проводной, изолированный, программируемый от °C						
	L25	ТМ7 до .	Г182-F HART® ATEX II3D, 2-проводной, изолированный, программируемый от °C						
	K11	ТМТ	Г184-А PROFIBUS-PA®, 2-проводной, программируемый отдо°С						
	K21	ТМТ	Г184-В PROFIBUS-PA® ATEX, 2-проводной, программируемый отдо°C						
	K22	ТМТ	Г184-С PROFIBUS-PA® FM IS, 2-проводной, программируемый отдо°С						
	K23	ТМТ	Г184-D PROFIBUS-PA® CSA, 2-проводной, программируемый отдо°C						
	K24	ТМТ	Г184-Е PROFIBUS-PA® CSA, 2-проводной, программируемый отдо°С						
	K25	TMT184-F PROFIBUS-PA® ATEX II3D, 2-проводной, изолированный, программируемый от до°C							
	YYY	Специальный преобразователь							
		Область применения и эксплуатация							
		1	В сборке						
		9	Специальное исполнение						
THT1-			← Код заказа (полный)						

Дополнительная документация

Брошюра "Область применения – измерение температуры"	FA006T/09/ru
Устанавливаемый в головке преобразователь температуры	
iTEMP® PCP TMT181	TI070R/09/ru
Устанавливаемый в головке преобразователь температуры	
iTEMP® HART® TMT182	TI078R/09/ru
Устанавливаемый в головке преобразователь температуры	
iTEMP® PA TMT184	TI079R/09/ru
Вставка термопары для датчиков температуры - Omniset TPC100	TI278T/02/ru
Вставка термопары для датчиков температуры - Omniset TPC300	
(готовится к выпуску)	(TI291T/02/ru)
Правила техники безопасности для использования во взрывоопасны	х зонах
(ТРС300, готовится к публикации)	XA017T/02/ru
TA фитинги и разъемы Omnigrad TA50, TA55, TA60, TA70, TA75	(TI091T/02/ru)
Термопарные датчики температуры Omnigrad TSC –	
Общая информация	TI090T/02/ru
Промышленные датчики температуры, РДТ и термопары	(TI236T/02/ru)
1 21 7 11 1	,

Региональное представительство

ООО "Эндресс+Хаузер" 117105, РФ, г. Москва Варшавское Шоссе, д.35, стр. 1, 5 этаж, БЦ "Ривер Плаза"

Тел. +7(495) 783-2850 Факс +7(495) 783-2855 www.ru.endress.com info@ru.endress.com

People for Process Automation